RELAP/SCDAPSIM MODELING CONCEPTS ADVANCED FLUID SYSTEMS ANALYSIS

- Detailed system thermal hydraulics for fluid systems and reactors
 - o Multi-dimensional fluid transport
 - o Heat conduction in structures
 - Heat conduction, melting (including molten pool natural circulation) in porous materials
 - Control systems
- System hydrodynamic solution uses engineering transport approach
 - Two fluid, non-equibrium conservation equations – liquid, vapor/non-condensable gases
 - Mass, energy, momentum
 - Thermodynamic state for fluids
 - H₂O, D₂O, Pb-Bi, Li-Pb, molten salts, oil, non-condensable gases
 - Other fluids easily added as needed
 - Constitutive relationships for heat, mass transfer developed through international research programs

• System structures can be modeled with multi-D models

- Slab, cylindrical, spherical structures
- Porous media used to model 2D structures, pebble beds
 - Convective heat removal (RELAP5 boundary condition)
 - Chemical reactions
 - Heat conduction
 - Melting with in. nat. circulation

- Control system components to build powerful control logic and computations
 - Control components can operate on any time-advanced quantity including other control variables
 - Basic functions available for control systems
 - Constant (Y_i = S)
 - Addition or Subtraction ($Y_i = S(A_o \pm A_1V_1 \pm A_2V_2 \dots)$
 - Multiplication (Y_i = S₁V₁V₂)
 - Division (Y_i = S/V₁ or S₁(V₁/V₂)
 - Integer Exponentiation (Y_i = SV₁ⁱ)
 - Real Exponentiation (Y_i = SV₁^r)
 - Variable Exponentiation (Y_i = SV₁^v)
 - Table lookup
 - Integration
 - Differentiation

• Powerful user options

- o Integrated uncertainty analysis
- Hydrodynamic loads analysis
- Integrated, interactive 3D GUI

SPECIALIZED REACTOR MODELS AND CORRELATIONS

• Point and 3D reactor kinetics

• Fuel and severe accident models and correlations

 Fuel rod components use 2D models to predict temperature (r,z), deformation, chemical interactions and melting

- Fuel rod simulator components use special electrically-heater models plus fuel rod model
- Control rod components use 2D models to predict temperature (r,z), deformation, chemical interactions and melting

 BWR control components use 3D models to predict temperature (r,z), deformation, chemical interactions and melting

- Shroud component include heat conduction, oxidation, and melt relocation models
- SCDAP core components used to define representative assemblies

 Material properties are contained in an easily modifiable separate materials library